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In [1], a proof of the prime number theorem is given, using the
following theorem.

THEOREM A. Let f be a real step function defined on (0, 1] by f(x)=a,
throughout (1/(n+1), 1/n], n=1,2,3, .., namely. f(x)=ar,, 4 throughout
(0, 1. If the special sequence of Riemann sums

B,=(ljn) ¥ flkin), n=1,2,3,.,
k=1

converge, as n — o, then so does the improper Riemann integral j o= f> and
to the same limit.

Theorem A is derived in [1] from a theorem of A. Wintner [4], which
is as follows.

THEOREM B. If the function f is Riemann integrable on [e, 1] for every
¢ in (0, 1), and if the lim, _, o- ¢ > F"51 f(ke) exists, then the improper integral
(6~ f converges, and to the same limit.

The proofs by A. Wintner [4] and Ingham [2], which are cited as
references in [1], are difficult and deep. The purpose of this note is to
present a proofl of Theorem A based on a well-known result of E. Landau.
It can easily be seen that the same proof is valid for Theorem B as well.

Proof of Theorem A. Let g(x):=f(1/x) and

G(x):= Y glxk)y= Y flk/x).
k<x k<x
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RIEMANN SUMS AND IMPROPER INTEGRALS

For0<e<,

ol ale
b flx)yde=]| g(lix)dx=| Fg(r)dt
ve ve ~1
;-1"61 :‘1‘:-"lk\
= | 3 L k) Glekydi= 3, 3 “ij(z,fk)d;.,
1 k=<t k<ie”

where p denotes the Mébius function. Since G(x)= G{Ix1),

G(x) 1 e\ [x]

A ——-\‘ :
X [x],\g[:‘] [x1) x
and. thus,
. G )
lim (x)z Iim B,=L.
X - ¢ X n—x

Hence,
G(x)Y=Lx+ o(x) as x— x.

Now, using the fact that | (1/r) dr diverges, we have

,.‘l L 1
(7—!—0<é>\)dtzL-S(i."£)+0(5(1,/s)},
“e k<le L
where
. plk) ptel plk)y 1 pltk).
S(tie)= —_— ~dt= —lo —logk
(1) LTk Jk ‘ k; k E L 08
1 1
082 Oklog(18> k; log 4

by a result of Landau [3, p. 568-569]. Therefore as ¢ - 07,

a1
| f(x)dx=L{o(1)—{—1))+o(1).
and

j‘ 1_ flxydx=L
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