## Note

# A Note on Riemann Sums and Improper Integrals Related to the Prime Number Theorem 

S. Selvaraj<br>Pennsylvania State Liniversity, Shenango Campus, Sharon, Pennsy/tania 16146<br>Communicated by the Editors-in-Chief<br>Received December 7, 1987; revised September 14, 1990

In [1], a proof of the prime number theorem is given, using the following theorem.

Theorem A. Let $f$ be a real step function defined on $(0,1]$ by $f(x)=a_{n}$ throughout $(1 /(n+1), 1 / n], n=1,2,3, \ldots$, namely, $f(x)=a_{[1 ; x]}$ throughout $(0,1]$. If the special sequence of Riemann sums

$$
B_{n}=(1 / n) \sum_{k=1}^{n} f(k / n), \quad n=1,2,3, \ldots
$$

converge, as $n \rightarrow x$, then so does the improper Riemann integral $\int_{0^{-}}^{1} f$, and to the same limit.

Theorem A is derived in [1] from a theorem of A. Wintner [4], which is as follows.

Theorem B. If the function $f$ is Riemann integrable on $[\varepsilon, 1]$ for every $\varepsilon$ in $(0,1)$, and if the $\lim _{\varepsilon \rightarrow 0^{-}} \varepsilon \sum_{k=1}^{[1, \varepsilon]} f(k \varepsilon)$ exists, then the improper integral $\int_{0^{-}}^{1} f$ converges, and to the same limit.

The proofs by A. Wintner [4] and Ingham [2], which are cited as references in [1], are difficult and deep. The purpose of this note is to present a proof of Theorem A based on a well-known result of E. Landau. It can easily be seen that the same proof is valid for Theorem $B$ as well.

Proof of Theorem $A$. Let $g(x):=f(1 / x)$ and

$$
G(x):=\sum_{k \leqslant x} g(x / k)=\sum_{k \leqslant x} f\left(k^{\prime} x\right) .
$$

For $0<\varepsilon<1$,

$$
\begin{aligned}
\int_{f}^{1} f(x) d x & =\int_{\varepsilon}^{i} g(1 ; x) d x=\int_{1}^{1 \varepsilon} \frac{1}{t^{2}} g(t) d t \\
& =\int_{1}^{1 ; \varepsilon} \frac{1}{t^{2}} \sum_{k \leqslant t} \mu(k) G(t \cdot k) d t=\sum_{k \leqslant 1, \varepsilon} \int_{-k}^{1 \varepsilon} \frac{\mu(k)}{t^{2}} G(t / k) d t
\end{aligned}
$$

where $\mu$ denotes the Möbius function. Since $G(x)=G([x])$,

$$
\frac{G(x)}{x}=\frac{1}{[x]} \sum_{k \leqslant[x]} f\left(\frac{k}{[x]}\right) \cdot \frac{[x]}{x}
$$

and. thus.

$$
\lim _{x \rightarrow \infty} \frac{G(x)}{x}=\lim _{n \rightarrow \infty} B_{n}=L
$$

Hence,

$$
G(x)=L x+o(x) \quad \text { as } \quad x \rightarrow x .
$$

Now, using the fact that $\int_{k}^{x}(1 / t) d t$ diverges, we have

$$
\left.\right|_{\varepsilon} ^{1} f(x) d x=\sum_{k \leqslant 1 \varepsilon} \frac{\mu(k)}{k} \int_{k}^{1 \varepsilon}\left(\frac{L}{t}+o\left(\frac{1}{t}\right)\right) d t=L \cdot S(1 / \varepsilon)+o(S(1 / \varepsilon))
$$

where

$$
\begin{aligned}
S(1, \varepsilon) & =\sum_{k \leqslant 1, \varepsilon} \frac{\mu(k)}{k} \int_{k}^{1 \varepsilon} \frac{1}{t} d t=\sum_{k \leqslant 1 \varepsilon} \frac{\mu(k)}{k} \log \frac{1}{\varepsilon}-\sum_{k \leqslant 1 \varepsilon} \frac{\mu(k)}{k} \log k \\
& =\log \frac{1}{\varepsilon} \cdot o\left(\frac{1}{\log (1 / \varepsilon)}\right)-\sum_{k \leqslant 1 \varepsilon} \frac{\mu(k)}{k} \log k
\end{aligned}
$$

by a result of Landau [3, p. 568-569]. Therefore as $\varepsilon \rightarrow 0^{-}$,

$$
\int_{\varepsilon}^{1} f(x) d x=L(o(1)-(-1))+o(1)
$$

and

$$
\int_{0^{-}}^{i} f(x) d x=L
$$

## References

1. J. S. Byrnes, A. Girolex, and O. Shisha, Riemann sums and improper integrals of step functions related to prime number theorem, J. Approx. Theory 40 (1984), 180-192.
2. A. E. Ingham, Improper integrals as limits of sums, J. London Math. Soc. 24 (1949), 44-50.
3. E. Landad, "Handbuch der Lehre von der Verteilung der Primzahlen," Chelsea, New York, 1953.
4. A. Wintner, The sum formula of Euler-Maclaurin and the inversions of Fourier and Möbius, Amer. J. Math. 69 (1947), 685-708.
